ST. LOUIS – The two 3-by-1-inch glass chips held the unfathomable amount of genetic information contained in 16 human genomes. Last week, a technician placed the chips — called flow cells — in a new genetic sequencing machine at the Genome Institute at Washington University and closed the door.
In just three days, the task will be complete.
It's mind-boggling given that it took scientists working all over the world more than 10 years and about $1 billion to first sequence the human genome, a feat declared officially complete in 2003.
This ultrafast sequencing machine, which hit the market last year, is only sold in groups of 10 — a system capable of sequencing 18,000 human genomes a year at just $1,000 to $1,500 per genome.
Washington University's Genome Institute is receiving its 10th HiSeq X machine, each one costing $1 million.
The massive increase in speed and drop in the cost of sequencing allows scientists to take on studies of unprecedented scale, which is necessary to make the conclusions and discoveries about human disease that doctors can put into everyday practice with personalized treatments.
"We have an opportunity to push genomics into the clinic and understand what causes disease and ultimately learn how to predict disease," said Rick Wilson, director of the Genome Institute.
That was the goal and hope when laboratories like the Genome Institute joined together in the early '90s to tackle the seemingly impossible task of mapping the human genome. "It's like being right at the beginning," Wilson said. "It's like a rocket ship, really."