At the University of Minnesota, researchers are growing corn in greenhouses like it's the year 2065.
The effort is part of a long-term plan to study how corn will grow under weather conditions considerably different from today's, predicted in climate change models for a half-century out.
"Many models show that with increasing temperatures we could be seeing a reduction in corn yields, so that's something we would like to investigate under controlled conditions," said Tim Griffis, University of Minnesota professor of biometeorology and one of several researchers directing projects.
Different models predict that corn yields could drop from 30 to 80 percent by the end of the century depending on locations and as a result of extreme heat, wetter springs, more intense rainstorms and drier summers.
The setting for the experiments is a state-of-the-art greenhouse addition on the University's St. Paul campus, funded mainly by the National Science Foundation. Researchers have constructed huge chest-high planters that contain 55 inches of soil excavated layer by layer from a traditional crop farm near Kenyon in southeastern Minnesota. To match the soil density, they painstakingly installed the layers in the same order within the containers, one inch at a time.
Six of the containers — each with 9.5 tons of soil — are growing small groupings of 18 corn plants that last week reached the open greenhouse roof and were tasseling.
Three of the containers are a control group and are receiving the same amount of rainfall that's been typical for southeastern Minnesota during the past 30 years. Three other containers are an experimental group that received 20 percent more rain than usual in the spring and are receiving 10 percent less rain than normal in the summer — similar to what climate models project for the years 2045 to 2065.
Researchers will compare the yields from each group, as well as nitrogen use and greenhouse gas emissions from the soil. Sensors at different soil depths also allow them to collect data on soil temperatures and soil water content.