After years of meticulous research, scientists at the University of Minnesota have mapped the genome of the zebra mussel, unlocking endless possibilities to combat, control and learn from the invasive mussel that has taken hold throughout the Great Lakes region.
The map, pieced together from hundreds of millions of lines of genetic code, will allow researchers to pinpoint the exact genes that have allowed the mussel to thrive while upending the ecology of lakes not just across Minnesota and North America, but in Europe as well.
Those genes could also provide clues, researchers hope, to weaknesses that could be exploited to collapse mussel populations, slow or stop their spread and limit their damage to lake ecosystems.
"This was the first step," said Nick Phelps, director of the U's Minnesota Aquatic Invasive Species Research Center. "We don't know yet quite where to attack. But now there's a whole spectrum of strategies that can be considered."
The genome sequence could make it possible to find ways to genetically modify zebra mussels in a way that could slash their populations here, Phelps said. That could mean manipulating their genes so they essentially self-destruct — destroying their ability to reproduce, or grow shells, or produce the adhesive they need to cluster and attach to boats, docks and lake beds.
It could also greatly improve more conventional control methods such as chemical treatments, said Daryl Gohl, one of the lead authors of the genome project.
"There are a lot of insights ... from the genome that don't rely on modifying the species," Gohl said. "It's really about understanding the basic biology of how they have thrived and finding any weaknesses that can be exploited."
Authors have provided the entire genome sequence to Biorxiv ("Bio-archive''), an online archive and publisher of life sciences research. The work is under peer review and available to scientists around the world.