The Super Bowl approaches. And with it come three symbols seen everywhere: LII.
Most dramatically sculpted in ice on Nicollet Mall, LII is of course 52 written in Roman numerals. Although these numerals were once the way a vast civilization wrote all of its numbers, in the modern world most people only encounter them at Super Bowl time.
We should all be grateful for the reason why: Roman numerals were replaced by the far superior number system we use today, without which computers and much of modern technology would not be possible.
While writing Roman numerals can be unwieldy — think of MCMLXXXVIII for 1988 — what really makes them pale in comparison to our present number system is their lack of place values. In the number 1988, for example, the 1 stands for one thousand because it is in the fourth position (counting from the right), while in 156 the 1 stands for one hundred because it is in the third position.
By contrast, the two Xs in XI and XVI both represent 10, even though they occupy different positions.
This difference makes addition and multiplication dramatically more difficult with Roman numerals. We can add 45 and 32 with two simple computations: add 4 and 3 and put the result in the second position, then add 5 and 2 and put the result in the first position. We get 45 + 32 = 77.
Now try doing the same computation in Roman numerals: XLV + XXXII. It's a mess.
What does this mean for practical applications? Computers rely on being able to represent every piece of data as a number, and every number as a string of 0s and 1s. Additionally, this must be done in a compact way that allows for easy storage. That would have been quite challenging for the Romans, both because they often required lots of symbols to represent relatively small numbers (such as 1988), and perhaps more fundamentally, because they didn't have a numeral for zero.