Little is known about how the tiny engineered objects known as nanoparticles affect the environment when they escape. A stream of new commercial applications for the diverse, super-tiny particles — in everything from paint and dental implants to sunscreen and scratch-proof eyeglasses — have far outstripped the environmental science.
New research from the University of Minnesota shows why that could be a problem.
Researchers found that a bacterium commonly found in soil and water adapts rapidly when exposed to certain nanoparticles that are used in lithium ion batteries, so that the bacterium that would have died on exposure became permanently resistant.
The bacteria mutated and continued to grow even when exposed to nanoparticles in twice the concentration that was previously lethal.
The researchers don't know if the mutation is dangerous, but the point is that the battery nanoparticles are doing something unintended, said U chemist Erin E. Carlson, lead author of the study.
"Just because we designed them as batteries doesn't mean that they don't do all kinds of other things," Carlson said in an interview. "My greatest concern is that we are putting things out in the environment without any data."


The finding was especially noteworthy given that the type of nanoparticle they studied wasn't developed to have any special antibacterial properties. It was designed for use in a lithium-ion battery for a Nissan LEAF electric vehicle. The bacteria used in the study, called Shewanella oneidensis MR-1, is often used in environmental studies.
The findings were published online in August in the journal Chemical Science.