Ten years ago this week, on Jan. 15, 2009, a US Airways Airbus A320 made an emergency landing on the Hudson River in New York City. The pilot, Capt. Chesley "Sully" Sullenberger, duly recognized as a hero (and portrayed onscreen by Tom Hanks), skipped his airliner to a stop across the river's surface, saving the lives of 150 passengers and five crew members.
Some citizens of Minneapolis had unknowingly begun preparations for what became known as the "Miracle on the Hudson" 40 years earlier.
From the moment of the double-engine bird strike, Sullenberger's stricken Airbus had less than three minutes before it would hit the ground. He and his co-pilot were able to start an auxiliary power unit to restore the flight controls. These controls played a vital role in providing real-time sensor data and responding precisely to Sully's commands.
Dedicated employees at the Honeywell Building between Ridgway Parkway and I-35W in northeast Minneapolis had played a vital role in making those controls available.
The "Ring Laser Gyro," first developed at the Minneapolis facility in 1966, was probably the most important sensory device aiding Sullenberger. Three RLGs, mounted at exact right angles, detect even the smallest amount of rotation around the three axes of an airplane — pitch, roll and yaw. Measurements of these minuscule rotations are used for a number of control functions, including long-range navigation. But displaying the aircraft's attitude precisely was key to the "miracle."
In a forced water landing, a pilot has only a tiny window of attitude within which to land the plane without things becoming very bad very quickly. Touchdown attitude has to be perfect.
It's like skipping a stone — but not just two or three skips, more like skipping it 100 times.
Come in too "nose up," and the tail will strike first, likely breaking the plane in half with fuel and sparks everywhere. Come in too "nose down," and the plane won't skip but will plunge into the water, flipping and again breaking apart.