Where is pi?
Last year, the World Health Organization began assigning Greek letters to worrying new variants of the coronavirus. The organization started with alpha and swiftly worked its way through the Greek alphabet in the months that followed. When omicron arrived in November, it was the 13th named variant in less than a year.
But 10 months have passed since omicron's debut, and the next letter in line, pi, has yet to arrive.
That does not mean SARS-CoV-2, the coronavirus that causes COVID-19, has stopped evolving. But it may have entered a new stage. Last year, more than a dozen ordinary viruses independently transformed into major new public health threats. But now, all of the virus's most significant variations are descending from a single lineage: omicron.
"Based on what's being detected at the moment, it's looking like future SARS-CoV-2 will evolve from omicron," said David Robertson, a virus expert at the University of Glasgow.
It's also looking like omicron has a remarkable capacity for more evolution. One of the newest subvariants, called BA.2.75.2, can evade immune responses better than all earlier forms of omicron.
For now, BA.2.75.2 is extremely rare, making up just 0.05% of the coronaviruses that have been sequenced worldwide in the past three months. But that was once true of other omicron subvariants that later came to dominate the world. If BA.2.75.2 becomes widespread this winter, it may blunt the effectiveness of the newly authorized boosters from Moderna and Pfizer.
Every time SARS-CoV-2 replicates inside of a cell, it might mutate. On rare occasions, a mutation might help SARS-CoV-2 replicate faster. Or it might help the virus evade antibodies from previous bouts of COVID-19.